Search results for "retrograde signaling"

showing 7 items of 7 documents

Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus

2011

In hippocampal neurons, synaptic transmission is affected by a variety of modulators, including nitric oxide (NO), which was proposed as a retrograde messenger as long as two decades ago. NO signals via two NO-sensitive guanylyl cyclases (NO-GCs) (NO-GC1 and NO-GC2) and the subsequent increase in cGMP. Lack of long-term potentiation in mice deficient in either one of the two NO-GCs demonstrates the involvement of both NO-GCs in synaptic transmission. However, the physiological consequences of NO/cGMP and the cellular mechanisms involved are unknown. Here, we analyzed glutamatergic synaptic transmission, most likely reflecting glutamate release, in the hippocampal CA1 region of NO-GC knockou…

General NeuroscienceGlutamate receptorLong-term potentiationHyperpolarization (biology)BiologyNeurotransmissionNitric oxideCell biologychemistry.chemical_compoundGlutamatergicBiochemistrychemistryRetrograde signalingSoluble guanylyl cyclaseEuropean Journal of Neuroscience
researchProduct

Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

2019

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus.…

0106 biological sciences0301 basic medicineretrograde signalingChloroplastsArabidopsisPlant BiologyMitochondrion01 natural sciencesElectron Transport Complex IIIGene Expression Regulation PlantArabidopsisOXIDATIVE STRESS-RESPONSETranscriptional regulationCYCLIC ELECTRON FLOWBiology (General)Nuclear proteinANAC transcription factors1183 Plant biology microbiology virologyreactive oxygen speciesbiologyChemistryRETROGRADE REGULATIONGeneral NeuroscienceQRNuclear Proteinsfood and beveragesGeneral MedicinePlants Genetically Modified:Science::Biological sciences [DRNTU]Cell biologyMitochondriaChloroplastviherhiukkasetMedicineSignal transductionmitochondrial functionsResearch ArticleSignal TransductionQH301-705.5SciencemitokondriotGenetics and Molecular BiologyGeneral Biochemistry Genetics and Molecular BiologyPROTEIN COMPLEXESSIGNALING PATHWAYS03 medical and health scienceschloroplastStress PhysiologicalALTERNATIVE OXIDASESkasvitENZYME-ACTIVITIESredox signalingTranscription factorarabidopsis RCD1General Immunology and MicrobiologybiokemiaArabidopsis Proteinsta1182Biology and Life Sciencesbiology.organism_classification030104 developmental biologyCELL-DEATHPLANT-MITOCHONDRIAA. thalianaGeneral BiochemistryRetrograde signalingGENES-ENCODING MITOCHONDRIALproteiinit010606 plant biology & botanyTranscription Factors
researchProduct

Hippocampal GABAergic Synapses Possess the Molecular Machinery for Retrograde Nitric Oxide Signaling

2007

Nitric oxide (NO) plays an important role in synaptic plasticity as a retrograde messenger at glutamatergic synapses. Here we describe that, in hippocampal pyramidal cells, neuronal nitric oxide synthase (nNOS) is also associated with the postsynaptic active zones of GABAergic symmetrical synapses terminating on their somata, dendrites, and axon initial segments in both mice and rats. The NO receptor nitric oxide-sensitive guanylyl cyclase (NOsGC) is present in the brain in two functional subunit compositions: α1β1and α2β1. The β1subunit is expressed in both pyramidal cells and interneurons in the hippocampus. Using immunohistochemistry andin situhybridization methods, we describe that the …

MaleInterneuronReceptors Cytoplasmic and NuclearNitric Oxide Synthase Type IBiologyNitric OxideHippocampusSynapseMiceSoluble Guanylyl CyclasemedicineAnimalsHumansRNA MessengerRats Wistargamma-Aminobutyric AcidMice Knockoutmusculoskeletal neural and ocular physiologyGeneral NeuroscienceArticlesAxon initial segmentRatsMice Inbred C57BLmedicine.anatomical_structurenervous systemGuanylate CyclaseSynaptic plasticitySynapsesbiology.proteinRetrograde signalingGABAergicSoluble guanylyl cyclaseNeuroscienceParvalbuminSignal Transduction
researchProduct

Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain.

2017

The gaseous second messenger nitric oxide (NO) has been shown to regulate memory formation by activating retrograde signaling cascades from post- to presynapse that involve cyclic guanosine monophosphate (cGMP) production to induce synaptic plasticity and transcriptional changes. In this study, we analyzed the role of NO in the formation of a visual working memory that lasts only a few seconds. This memory is encoded in a subset of ring neurons that form the ellipsoid body in the Drosophila brain. Using genetic and pharmacological manipulations, we show that NO signaling is required for cGMP-mediated CREB activation, leading to the expression of competence factors like the synaptic homer pr…

0301 basic medicineSerum Response FactorEngramBiologyCREBNitric OxideGeneral Biochemistry Genetics and Molecular BiologyPresynapse03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAnimalsDrosophila ProteinsHydrogen SulfideCyclic guanosine monophosphateCyclic GMPNeuronsNeurotransmitter AgentsWorking memoryNuclear Proteins030104 developmental biologyDrosophila melanogasterMemory Short-TermchemistrySecond messenger systemSynaptic plasticityRetrograde signalingbiology.proteinVisual PerceptionGeneral Agricultural and Biological SciencesNeuroscience030217 neurology & neurosurgerySignal TransductionTranscription FactorsCurrent biology : CB
researchProduct

A model for long-term potentiation and depression

1995

A computational model of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus is presented. The model assumes the existence of retrograde signals, is in good agreement with several experimental data on LTP, LTD, and their pharmacological manipulations, and shows how a simple kinetic scheme can capture the essential characteristics of the processes involved in LTP and LTD. We propose that LTP and LTD could be two different but conceptually similar processes, induced by the same class of retrograde signals, and maintained by two distinct mechanisms. An interpretation of a number of experiments in terms of the molecular processes involved in LTP and LTD induction and …

Neuronal PlasticityTime FactorsKinetic modelmusculoskeletal neural and ocular physiologyCognitive NeuroscienceLong-Term PotentiationModels NeurologicalHippocampusLong-term potentiationHippocampusSensory SystemsKineticsCellular and Molecular Neurosciencenervous systemSynapsesRetrograde signalingAnimalsHumansComputer SimulationPsychologyNeuroscienceMathematicsSignal TransductionJournal of Computational Neuroscience
researchProduct

RCD1 Coordinates Chloroplastic and Mitochondrial Electron Transfer through Interaction with ANAC Transcription Factors in Arabidopsis

2018

AbstractSignaling from chloroplasts and mitochondria, both dependent on reactive oxygen species (ROS), merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). ROS produced in the chloroplasts affect the abundance, thiol redox state and oligomerization of RCD1. RCD1 directly interactsin vivowith ANAC013 and ANAC017 transcription factors, which are the mediators of the ROS-related mitochondrial complex III retrograde signa and suppresses activity of ANAC013 and ANAC017. Inactivation ofRCD1leads to increased expression of ANAC013 and ANAC017-regulated genes belonging to the mitochondrial dysfunction stimulon (MDS), including genes for mitochondrial alternative oxidases(AOXs).Accumulat…

0106 biological scienceschemistry.chemical_classification0303 health sciencesReactive oxygen speciesNuclear genebiologyfood and beveragesMitochondrionbiology.organism_classification01 natural sciencesCell biologyChloroplast03 medical and health scienceschemistryArabidopsisRetrograde signalingNuclear proteinTranscription factor030304 developmental biology010606 plant biology & botany
researchProduct

The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition

2011

Abstract BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF +/− ) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibi…

Long-Term PotentiationBiophysicsTropomyosin receptor kinase BIn Vitro TechniquesBiologyNitric oxideMicechemistry.chemical_compoundmedicineAnimalsEnzyme InhibitorsCA1 Region HippocampalMolecular BiologyMice KnockoutBrain-derived neurotrophic factorBrain-Derived Neurotrophic Factormusculoskeletal neural and ocular physiologyGeneral NeuroscienceExcitatory Postsynaptic PotentialsLong-term potentiationElectric StimulationCell biologyMice Inbred C57BLNG-Nitroarginine Methyl EsterSynaptic fatiguemedicine.anatomical_structureAnimals Newbornnervous systemchemistrySchaffer collateralSynaptic plasticityRetrograde signalingNeurology (clinical)Nitric Oxide SynthaseNeuroscienceDevelopmental BiologyBrain Research
researchProduct